
RMarkdown Driven Development
(RmdDD)

Emily Riederer

@emilyriederer

tinyurl.com/rmddd
tinyurl.com/rmddd-appendix

tinyurl.com/rmddd
tinyurl.com/rmddd-appendix

Code notebooks such as RMarkdown and Jupyter facilitate interactive data exploration and

persistent document creation with literate programming

title: “My Analysis"

output: html_document

```{r setup, include=FALSE}

knitr::opts_chunk$set(echo = FALSE)

```

```{r pkg-load}

library(dplyr)

library(tidyr)

library(survival)

library(ggfortify)

```

```{r data-load}

outcomes_df <- readr::read_csv(‘outcomes.csv’)

```

Introduction

In this analysis, we report the…

```{r all-the-good-code}

Websites

Dashboards Analysis Reports

Slides



Each analysis depends on a latent tool custom-fit to your domain-specific workflow

---

title: “My Analysis"

output: html_document

---

```{r setup, include=FALSE}

knitr::opts_chunk$set(echo = FALSE)

```

```{r pkg-load}

library(dplyr)

library(tidyr)

library(survival)

library(ggfortify)

```

```{r data-load}

outcomes_df <- readr::read_csv(‘outcomes.csv’)

```

## Introduction

In this analysis, we report the…

```{r all-the-good-code}

library(myperfectpackage)

title: “My Analysis"

output: html_document

```{r setup, include=FALSE}

knitr::opts_chunk$set(echo = FALSE)

```

```{r pkg-load}

library(dplyr)

library(tidyr)

library(survival)

library(ggfortify)

```

```{r data-load}

outcomes_df <- readr::read_csv(‘outcomes.csv’)

```

Introduction

In this analysis, we report the…

```{r all-the-good-code}



Each analysis depends on a latent tool custom-fit to your domain-specific workflow

---

title: “My Analysis"

output: html_document

---

```{r setup, include=FALSE}

knitr::opts_chunk$set(echo = FALSE)

```

```{r pkg-load}

library(dplyr)

library(tidyr)

library(survival)

library(ggfortify)

```

```{r data-load}

outcomes_df <- readr::read_csv(‘outcomes.csv’)

```

## Introduction

In this analysis, we report the…

```{r all-the-good-code}

library(myperfectpackage)

✓ Curated set of related libraries

✓ Working and “tested” code

✓ Understanding of requirements

✓ Sane workflow

✓ Complete & compelling example

Development

Design

RMarkdown Driven Development (RmdDD) has five main steps

Removing

troublesome

components

Rearranging chunks

Reducing

duplication with

functions

Migrating

RMarkdown to

project

Converting project

to a package

RmdDD has multiple endpoints, so you can take the right exit ramp for your destination

Removing

troublesome

components

Rearranging chunks

Reducing

duplication with

functions

Migrating

RMarkdown to

project

Converting project

to a package

Low Quality High Quality

Bad Person Good Person

Worse UX Better UX

X

X

X

Specific

Instance
Generic Class

File Project Package

Eliminate clutter to make your own code more trustworthy for its initial use

Removing

troublesome

components

Rearranging chunks

Reducing

duplication with

functions

Migrating

RMarkdown to

project

Converting project

to a package

Parameters can protect the integrity of your analysis and your credentials

Removing

troublesome

components

Rearranging chunks

Reducing

duplication with

functions

Migrating

RMarkdown to

project

Converting project

to a package

title: “My Analysis"

output: html_document

{{package loads, data loads, etc.}}

```{r}

data_lastyr <- data %>%

filter(between(date, ‘2018-01-01’, ‘2018-12-31’))

```

title: “My Analysis"

output: html_document

params:

start: ‘2018-01-01’

end: ‘2018-12-31’

{{package loads, data loads, etc.}}

```{r}

data_lastyr <- data %>%

filter(between(date, params$start, params$end))

```


Parameters can protect the integrity of your analysis and your credentials

Removing

troublesome

components

Rearranging chunks

Reducing

duplication with

functions

Migrating

RMarkdown to

project

Converting project

to a package

title: “My Analysis"

output: html_document

params:

username: emily

password: x

{{package loads, data loads, etc.}}

```{r}

con <-

connect_to_database(

username = params$username,

password = params$password

)

```

RStudio: Knit > Knit with Parameters…

Local file paths nearly guarantee that your project will not work on someone else’s machine

Removing

troublesome

components

Rearranging chunks

Reducing

duplication with

functions

Migrating

RMarkdown to

project

Converting project

to a package

data <- readRDS(‘C:\Users\me\Desktop\my-project\data\my-data.rds’)

data <- readRDS(‘data\my-data.rds’)

data <- readRDS(here::here(‘data’, ‘my-data.rds’)) here

Not resilient to any file structure change:

Resilient to movement of working directory:

Resilient to movement of Rmd within working directory or across OS:

Don’t let your script become a junk drawer

Removing

troublesome

components

Rearranging chunks

Reducing

duplication with

functions

Migrating

RMarkdown to

project

Converting project

to a package

X Unused package loads

X Unsuccessful coding experiments

RMarkdown is (too) good at capturing our non-linear thought processes

Removing

troublesome

components

Rearranging chunks

Reducing

duplication with

functions

Migrating

RMarkdown to

project

Converting project

to a package

Clustering quantitative and narrative components makes both easier to iterate on

Removing

troublesome

components

Rearranging chunks

Reducing

duplication with

functions

Migrating

RMarkdown to

project

Converting project

to a package

Infrastructure &

Computing to the top

Communication &

Narration to the bottom

• Clear dependencies

• Frontloaded errors

• Consolidated story

• Easier for non-coder to contribute

• Increased likelihood of noticing

repeated code

Enhance the navigability of your file in RStudio with chunk names and special comments

Removing

troublesome

components

Rearranging chunks

Reducing

duplication with

functions

Migrating

RMarkdown to

project

Converting project

to a package

Expandable TOC allows you to

jump to your Markdown headers (#)

Comments followed by four dashes

create expand/contract button in

margin and bookmark on nav bar

Named chunks create

bookmark on nav bar and

encourage semantically

grouped chunks

Writing functions eliminates duplication and increases code readability

Removing

troublesome

components

Rearranging chunks

Reducing

duplication with

functions

Migrating

RMarkdown to

project

Converting project

to a package

Writing functions eliminates duplication and increases code readability

Removing

troublesome

components

Rearranging chunks

Reducing

duplication with

functions

Migrating

RMarkdown to

project

Converting project

to a package

Exploratory Analysis

```{r}

ggplot(data, aes(x,y)) + geom_point()

```

```{r}

ggplot(data, aes(x,z)) + geom_point()

```

```{r}

ggplot(data, aes(x,w)) + geom_point()

```

```{r fx-viz-scatter-x}

viz_scatter_x <- function(data, vbl) {

ggplot(

data = data, 

mapping = aes(x = x, y = {{vbl}}) +

geom_point()

}

```

Exploratory Analysis

```{r viz-scatter-x }

viz_scatter_x(data, y)

viz_scatter_x(data, z)

viz_scatter_x(data, w)

```


roxygen2 function documentation can give your script a package-like understandability

Removing

troublesome

components

Rearranging chunks

Reducing

duplication with

functions

Migrating

RMarkdown to

project

Converting project

to a package

```{r fx-viz-scatter-x}

#’ Scatterplot of variable versus x 

#'

#' @param data Dataset to plot. Must contain variable named x

#' @param vbl Name of variable to plot on y axis

#'

#' @return ggplot2 object

#’ @import ggplot2

#' @export

viz_scatter_x <- function(data, vbl) {

ggplot(

data = data, 

mapping = aes(x = x, y = {{vbl}}) +

geom_point()

}

```

RStudio: Ctrl + Alt + Shift + R for skeleton

Get a virtual second pair of eyes on your polished single-file RMarkdown

Removing

troublesome

components

Rearranging chunks

Reducing

duplication with

functions

Migrating

RMarkdown to

project

Converting project

to a package

Automatically find areas of improvement with lintr, styler, and spelling

Analyses code and points out potential style violations

Automatically reformats code with built-in style guides

Highlight typos in code

> lintr::lint(‘my-analysis.Rmd’)

styler

lintr

spelling

A polished single-file RMarkdown can be a very practical end-state for maximum portability

Removing

troublesome

components

Rearranging chunks

Reducing

duplication with

functions

Migrating

RMarkdown to

project

Converting project

to a package

File

Standalone File

Benefits Pitfalls

• Portable without formal repository

• Easy to compare versions with diffs without formal

version control

• One-push execution / refresh

• Can be lengthy, monolithic, and intimidating

• Potentially slow to run and relies on RMarkdown to

play role of job scheduler

• Enables antipatterns (e.g. not saving artifacts)

Projects modularize components and make it easy to access individual project assets

Removing

troublesome

components

Rearranging chunks

Reducing

duplication with

functions

Migrating

RMarkdown to

project

Converting project

to a package


```{r fx-viz-scatter-x}

#’ Scatterplot of variable versus x 

#'

#' @param data Dataset to plot. Must contain variable named x

#' @param vbl Name of variable to plot on y axis

#'

#' @return ggplot2 object

#’ @import ggplot2

#' @export

viz_scatter_x <- function(data, vbl) {

ggplot(

data = data, 

mapping = aes(x = x, y = {{vbl}}) +

geom_point()

}

```

Exploratory Analysis

```{r viz-scatter-x }

viz_scatter_x(data, y)

viz_scatter_x(data, z)

viz_scatter_x(data, w)

```

The source()function enables us to execute R code from another script

Removing

troublesome

components

Rearranging chunks

Reducing

duplication with

functions

Migrating

RMarkdown to

project

Converting project

to a package

#’ Scatterplot of variable versus x

#'

#' @param data Dataset to plot. Must contain variable named x

#' @param vbl Name of variable to plot on y axis

#'

#' @return ggplot2 object

#’ @import ggplot2

#' @export

viz_scatter_x <- function(data, vbl) {

ggplot(

data = data,

mapping = aes(x = x, y = {{vbl}}) +

geom_point()

}

```{r load-fx}

source(here(‘src’, ‘viz-scatter-x.R’))

```

Exploratory Analysis

```{r viz-scatter-x }

viz_scatter_x(data, y)

viz_scatter_x(data, z)

viz_scatter_x(data, w)

```


Pre-processing data decreases external system dependencies and knitting time

Removing

troublesome

components

Rearranging chunks

Reducing

duplication with

functions

Migrating

RMarkdown to

project

Converting project

to a package

src

src
data

output

Load data outside of Rmd to eliminate dependence on API,
Database, etc. being ‘up’ when need to knit

Store ‘raw’ data for posterity and reproducibility

Store analytical artifacts (e.g. lean models, aggregate data) to
read in to final report

There are many tools to help make a project, but consistency is the key!

Removing

troublesome

components

Rearranging chunks

Reducing

duplication with

functions

Migrating

RMarkdown to

project

Converting project

to a package

Project
Template

Standardized File Structure Dependency Management

renv

R projects preserve problem-specific context while making it easy to reapply components

Removing

troublesome

components

Rearranging chunks

Reducing

duplication with

functions

Migrating

RMarkdown to

project

Converting project

to a package

Project

Project

Benefits Pitfalls

• Flexible to extract small proportion of functionality or

modify at will

• Preserves problem-specific context (when desirable)

• The line between analysis and code may be unclear

• Can’t make full use of developer tools

There is a near one-to-one mapping between the components of a project and a package

Removing

troublesome

components

Rearranging chunks

Reducing

duplication with

functions

Migrating

RMarkdown to

project

Converting project

to a package

Developer tools exist to help us create everything we need – and more!

Removing

troublesome

components

Rearranging chunks

Reducing

duplication with

functions

Migrating

RMarkdown to

project

Converting project

to a package

PackageSets up all of the folders and configuration files to ensure

your package assets are put in the right place

Autogenerates documentation (man/ folder) from your

roxygen2 function comments

Provides high level interface for writing and running

unit tests

Renders a polished, user-friendly website from

package metadata

Different stopping points optimize for recreation versus extension of your work

Standalone File

Project

Package

Benefits Pitfalls

• Portable without formal repository

• Easy to compare versions with diffs without

formal version control

• One-push execution / refresh

• Can be lengthy, monolithic, and intimidating

• Potentially slow to run and relies on RMarkdown

to play role of job scheduler

• Enables antipatterns (e.g. not saving artifacts)

• Flexible to extract small proportion of functionality

or modify at will

• Preserves problem-specific context (when

desirable)

• The line between analysis and code may be

unclear

• Can’t make full use of developer tools

• Formal mechanisms for distributing at scale (e.g.

CRAN)

• Familiar format for others to learn and use

• May be too narrowly focused and inflexible if built

towards specific project

• Potentially more challenging to extract specific

features from for interactive use

Specific

Instance

Generic

Class

No matter what path you chose, your RMarkdown analysis is closer to a sustainable and

empathetic data product than you may think!

Removing

troublesome

components

Rearranging chunks

Reducing

duplication with

functions

Migrating

RMarkdown to

project

Converting project

to a package

File Project Package

Emily Riederer

@emilyriederer

tiny.cc/rmddd

tiny.cc/rmddd

Please get in touch or see related blog posts for more details

Emily Riederer

@emilyriederer

tinyurl.com/rmddd tinyurl.com/rmddd-appendix

RMarkdown Driven Development Technical Appendix

tinyurl.com/rmddd
tinyurl.com/rmddd-appendix

